Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.138
Filtrar
1.
Heliyon ; 10(6): e28169, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38560699

RESUMEN

In this study, we report theoretically the effect of well, barrier widths and polarization on optical properties of intersubband transitions (ISBT) in CdSe/MgSe asymmetric quantum wells (ADQWs). Eigenenergies and their corresponding wave functions have been calculated by solving numerically the Schrödinger equation. The second harmonic generation and the optical rectification including intersubband transition energies have been discussed. Obtained results revealed that intersubband transition depends strongly on the quantum wells and the barrier widths as well as the stark effect. With appropriate intensity, optical rectification can reach great magnitude. We hope that the numerical results of our research are valuable theoretically and experimentally to our scientific community in nonlinear optics.

2.
Geriatr Psychol Neuropsychiatr Vieil ; 22(1): 49-57, 2024 Mar 01.
Artículo en Francés | MEDLINE | ID: mdl-38573144

RESUMEN

Our aim is to explore the possible emergence of traumatic symptoms and the identity-related repercussions of the restrictions on elderly, who entered into nursing homes during the Covid-19 health crisis in France. Twenty-five subjects institutionalised before the health crisis and twenty-six subjects institutionalised during the periods of lockdown into nursing homes completed scales assessing anxiety-depressive symptomatology, traumatic symptoms and identity. Anxiety and depression symptoms were similar between the groups. The institutionalised group showed a significantly higher prevalence of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria D and E on the Post traumatic Stress Disorder Checklist version DSM-5 (PCL-5) during lockdown. Entry into an institution during the health crisis would have favored the emergence of traumatic symptoms in the participants. Consideration of the ethical issues raised by this study could make it possible to offer more individualised support to elderly during their transition to a new home.


Asunto(s)
COVID-19 , Anciano , Humanos , Control de Enfermedades Transmisibles , Casas de Salud , Instituciones de Cuidados Especializados de Enfermería , Ansiedad/epidemiología
3.
Small ; : e2400164, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573934

RESUMEN

Captured by high theoretical capacity and low-cost, Sodium-Sulfur (Na-S) batteries have been deemed as promising energy-storage systems. However, their electrochemical properties, containing both cycling and rate properties, still suffer from the notorious "shuttle effect" of polysulfide. Herein, through the effective regulation of pore sizes, a series of S@SiO2 cathode materials are obtained. Benefitting from the abundant pore channels of SiO2 particles, the sulfur loading is as high as 76.3%. Importantly, a suitable pore size can lead to adequate reaction and rapid diffusion behaviors, resulting in excellent electrochemical performances. Specifically, at 2.0 A g-1, the initial capacity of the as-optimized sample can be up to 1370.6 mAh g-1. Surprisingly, even after 1050 cycles, it could achieve a high reversible capacity of 1280.8 mAh g-1 with an attenuation rate of 0.089%. At 5.0 A g-1, after 500 cycles, the capacity can still remain ≈ 1132.6 mAh g-1 (capacity retention rate, 97.5%). Given this, the work is anticipated to offer an effective strategy for advanced electrodes for Na-S batteries.

4.
Angew Chem Int Ed Engl ; : e202404505, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598471

RESUMEN

Ammonia borane (AB) with 19.6 wt.% H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2∙molmetal∙min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrated magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8% over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

5.
Angew Chem Int Ed Engl ; : e202402973, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644341

RESUMEN

Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti+4) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.

6.
Nano Lett ; 24(15): 4346-4353, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587212

RESUMEN

Ghost phonon polaritons (g-PhPs), a unique class of phonon polaritons in the infrared, feature ultralong diffractionless propagation (>20 µm) across the surface and tilted wavefronts in the bulk. Here, we study hybrid g-PhPs in a heterostructure of calcite and an ultrathin film of the phase change material (PCM) In3SbTe2, where the optical field is bound in the PCM film with enhanced confinement compared with conventional g-PhPs. Near-field optical images for hybrid g-PhPs reveal a lemniscate pattern in the momentum distribution. We fabricated In3SbTe2 gratings and investigated how different orientations and periodicities of gratings impact the propagation of hybrid g-PhPs. As the grating period decreases to zero, the wavefront of hybrid g-PhPs can be dynamically steered by varying the grating orientation. Our results highlight the promise of hybrid g-PhPs with tunable functionalities for nanophotonic studies.

7.
Angew Chem Int Ed Engl ; : e202402915, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569128

RESUMEN

Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on temperature-assisted delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl(bromo)phenyl acetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and living radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.

8.
Angew Chem Int Ed Engl ; : e202403245, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinementstepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5 × 107 ≤ V ≤ 1.3 × 108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98%), supreme ethylene selectivity (98%), and superior catalytic endurance (in excess of 100 hours).

9.
Healthcare (Basel) ; 12(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38610196

RESUMEN

The state of confinement during the COVID-19 pandemic affected the quality of life of the general population. This study aims to define and contrast an explanatory model of the quality of life in adults and to analyze the relationships between these variables based on the state of confinement and sex. A total of 872 people from Chile aged between 17 and 50 (M = 21.70 years; SD= 3.272), of both sexes (60.90% male and 39.1% female) participated in this research, of whom 46.6% were not confined when tested and 53.4% were confined, analyzing the quality of life. A model of multi-group structural equations was performed, which adjusted very well (χ2 = 559.577; DF = 38; p < 0.001; IFC = 0.934; NFI = 0.916; IFI = 0.934; RMSEA = 0.061). The results show a positive and direct relationship among all the variables studied and the structural equation model proposed according to confinement and sex reveals a good fit in all the evaluation indexes. Stress and sleep, personality, and introspection were the indicators with the greatest influence in the four models, followed by the family and friends indicator with a medium correlation strength, such as the health monitoring dimension, although this was not as influential in confined individuals. The main conclusions are that the best adjustments are obtained in confined adults and females, and the data show that the psychological indicators obtained (stress and sleep, personality, and introspection) have the greatest influence on adults in the four models proposed with regard to their quality of life.

10.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611950

RESUMEN

This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores.

11.
Materials (Basel) ; 17(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612121

RESUMEN

As a direct band gap semiconductor, perovskite has the advantages of high carrier mobility, long charge diffusion distance, high defect tolerance and low-cost solution preparation technology. Compared with traditional metal halide perovskites, which regulate energy band and luminescence by changing halogen, perovskite quantum dots (QDs) have a surface effect and quantum confinement effect. Based on the LaMer nucleation growth theory, we have synthesized CsPbBr3 QDs with high dimensional homogeneity by creating an environment rich in Br- ions based on the general thermal injection method. Moreover, the size of the quantum dots can be adjusted by simply changing the reaction temperature and the concentration of Br- ions in the system, and the blue emission of strongly confined pure CsPbBr3 perovskite is realized. Finally, optical and electrochemical tests suggested that the synthesized quantum dots have the potential to be used in the field of photocatalysis.

12.
Macromol Rapid Commun ; : e2400121, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636079

RESUMEN

The utilization of polymer conformations to construct a variety of superlattices is a common method within the field. However, this technique often results in only long-range ordering rather than the formation of distinct superlattices. In our study, we successfully obtained a well-organized array of discrete pancake-shaped superlattices (DPSs) through the utilization of air-liquid interface self-assembly, facilitated by the confined environment created by a block copolymer. It is crucial to note that both the self-assembly behavior and resulting morphologies of the DPSs can be precisely tuned by adjusting several experimental parameters, most notably the concentration and molecular architecture of the block copolymers. Furthermore, our work provides valuable insights into the formation processes and mechanisms underpinning the DPSs. The approach described here is both straightforward and efficacious, establishing a strong foundation for subsequent research and the development of non-close-packed superlattice structures. This article is protected by copyright. All rights reserved.

13.
Chemistry ; : e202400333, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639068

RESUMEN

The selective hydrogenation of furfural (FFA) to furfuryl alcohol (FA) is regarded as attractive transformation to achieve the sustainable synthesis of value-added chemicals from biomass resources. However, the conventional supported catalysts are significantly restricted by their narrow pore size, ununiform dispersion and easy leaching or aggregation of catalytic sites. Herein, we designed hollow UiO-66-NH2 as the support to encapsulate Pd nanoparticles (Pd@H-UiO-66-NH2) to achieve the highly active and selective conversion of FFA to FA. Benefiting from the void-confinement effect and substrate enrichment of hollow structure, as well as the surface wrinkles, the as-prepared catalyst Pd@H-UiO-66-NH2 exhibited 96.8 % conversion of FFA with satisfactory selectivity reaching up to 92.4 % at 80 °C, 0.5 MPa H2 in isopropanol solvent within 6 h. More importantly, as-prepared Pd@H-UiO-66-NH2 catalyst exhibited excellent long-term stability, as well as good universality toward a series of hydrogenation of unsaturated hydrocarbons.

14.
Electrophoresis ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613523

RESUMEN

Electrophoresis of a weakly charged dielectric droplet with constant surface charge density in a chargeless cylindrical pore is investigated theoretically in this study, focusing on the boundary confinement effect of the double layer, which in turn determines the ultimate motion of the droplet. A patched pseudo-spectral method based on the Chebyshev polynomial is adopted to solve the resulting governing fundamental electrokinetic equations. Mobility reversal, among other interesting phenomena, is observed when the droplet is in a narrow cylindrical pore. No such observation was made in the corresponding motion of a rigid particle. The droplet with a thick double layer may even move against the prediction based on the Coulomb electrostatic law, for instance, a positively charged droplet may move against the electric field. The significant enhancement of the motion-deterring double layer polarization due to the severe steric boundary confinement within a narrow cylindrical pore is found to be responsible for this seemingly peculiar phenomenon. Moreover, smaller droplets may move in the opposite direction of the larger ones. The results are useful in capillary electrophoresis involving droplets in particular and migration of droplets through narrow channels in general.

15.
Biotechniques ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655877

RESUMEN

Large DNA molecules (>20 kb) are difficult analytes prone to breakage during serial manipulations and cannot be 'rescued' as full-length amplicons. Accordingly, to present, modify and analyze arrays of large, single DNA molecules, we created an easily realizable approach offering gentle confinement conditions or immobilization via spermidine condensation for controlled delivery of reagents that support live imaging by epifluorescence microscopy termed 'Gel-Stacks.' Molecules are locally confined between two hydrogel surfaces without covalent tethering to support time-lapse imaging and multistep workflows that accommodate large DNA molecules. With a thin polyacrylamide gel layer covalently bound to a glass surface as the base and swappable, reagent-infused, agarose slabs on top, DNA molecules are stably presented for imaging during reagent delivery by passive diffusion.

16.
ChemSusChem ; : e202400417, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656661

RESUMEN

Herein, we report a highly selective production route for butadiene from γ-valerolactone over zeolite catalysts. The catalytic performance of eight zeolites with different framework topologies were compared, revealing that zeolites with narrower 10-membered ring channels exhibit enhanced selectivity of butadiene. Specifically, ZSM-35 and ZSM-22, featuring the narrowest 10-membered ring channels, demonstrate the highest butadiene selectivity to 61% and 59%, respectively. Notably, surface passivation of ZSM-35 leads to a remarkable increase in butadiene selectivity to 82%, maintaining a 99% conversion. Additionally, we propose a reaction network and identify cyclopentenone as a key intermediate in the transformation of γ-valerolactone to butadiene. Both experimental and theoretical results conclude that confinement effect of 10-membered ring channels improves the selectivity of butadiene.

17.
Nano Lett ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649277

RESUMEN

Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.

18.
ACS Nano ; 18(16): 10807-10817, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598660

RESUMEN

Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr3 QDs. However, this also increases the fluorescence intermittency. Achieving high SP purity and blinking mitigation simultaneously remains a significant challenge. Here, we transcend this limitation with room-temperature synthesized weakly confined hybrid organic-inorganic perovskite (HOIP) QDs. Superior single photon purity with a low g(2)(0) < 0.07 ± 0.03 and a nearly blinking-free behavior (ON-state fraction >95%) in 11 nm FAPbBr3 QDs are achieved at room temperature, attributed to their long exciton lifetimes (τX) and short biexciton lifetimes (τXX). The significance of the organic A-cation is further validated using the mixed-cation FAxCs1-xPbBr3. Theoretical calculations utilizing a combination of the Bethe-Salpeter (BSE) and k·p approaches point toward the modulation of the dielectric constants by the organic cations. Importantly, our findings provide valuable insights into an additional lever for engineering facile-synthesized room-temperature PQD single photon sources.

19.
ACS Sens ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626402

RESUMEN

With the escalating global awareness of air quality management, the need for continuous and reliable monitoring of toxic gases by using low-power operating systems has become increasingly important. One of which, semiconductor metal oxide gas sensors have received great attention due to their high/fast response and simple working mechanism. More specifically, self-heating metal oxide gas sensors, wherein direct thermal activation in the sensing material, have been sought for their low power-consuming characteristics. However, previous works have neglected to address the temperature distribution within the sensing material, resulting in inefficient gas response and prolonged response/recovery times, particularly due to the low-temperature regions. Here, we present a unique metal/metal oxide/metal (MMOM) nanowire architecture that conductively confines heat to the sensing material, achieving high uniformity in the temperature distribution. The proposed structure enables uniform thermal activation within the sensing material, allowing the sensor to efficiently react with the toxic gas. As a result, the proposed MMOM gas sensor showed significantly enhanced gas response (from 6.7 to 20.1% at 30 ppm), response time (from 195 to 17 s at 30 ppm), and limit of detection (∼1 ppm) when compared to those of conventional single-material structures upon exposure to carbon monoxide. Furthermore, the proposed work demonstrated low power consumption (2.36 mW) and high thermal durability (1500 on/off cycles), demonstrating its potential for practical applications in reliable and low-power operating gas sensor systems. These results propose a new paradigm for power-efficient and robust self-heating metal oxide gas sensors with potential implications for other fields requiring thermal engineering.

20.
Anal Chim Acta ; 1304: 342541, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637051

RESUMEN

BACKGROUND: Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS: Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE: In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Ácidos Nucleicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas de Amplificación de Ácido Nucleico/métodos , Dispositivos Laboratorio en un Chip , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...